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Although our understanding of the bonding in transition metal Scheme 1. Synthesis and Reactions of Ru(TTP)(NBCI
chalcocarbonyls, IMC=E (E= O, S, Se, Te), is well grounded
in both experimentand theory? our knowledge of the bonding H
in the related family of chalconitrosyls,MN=E, is much more @D _ NsSsCly
limited. For example, although numerous nitrosyl complexes ’ U]

: . MeOH cl
have been characterized, and frequently reviettaed, number 1. NO/MeOH/DBU 1
of isostructural WMN=E complexes with E= O and S remains l 2. HCI
small, and there are no reported examples of stable isolable l AgNO,
complexes with either a bent thionitrosyl or linear selenonitrosyl o W) o (i)
or telluronitrosyl ligand. A thorough analysis of the bonding ﬂ N
in CpCr(CO}(NE) with Fenske-Hall calculations and vacuum KNSO -
UV photoelectron spectroscopindicates that for this metal (iii)
fragment the stronger-donation of the thionitrosyl is comple- cl ;S‘o

mented by stronger interactions with both the filled high- A Conditi 2 () CHCl, 25°C, 25 min: (i) CHCla, 1 h, 25°C
energy(NS) orbital and the empty*(NS). The net result is . ~onditions: (I 2, £9 L, 25 miM, (il “12 L1 ;
that the thionitrosyl removes more electron density than nitric (ilfy CHClz, 25°C, 30 min; (iv) CHCIz, 25°C, 2 min.
oxide from the metal in the CpCr(C®Jragment. Similar  5n65ide and incorporation of both thionitrosyl and chioride
?:rn[(lz_h;(s'ﬁ/lrgil EﬁvzaMbeerI;fagS\etéwng CSN'?(O/ Zé?j’ell\l%alfull_a“onsto give 1, Scheme 1, in 85% yieltf. An ORTEP view for the

4 = ) yE= 0, 50 A= ) 2 3
= CI~, OH,).%" However, recent electrochemical and structural
results for [Tc(phenX(NE)]™* (phen= 1,10-phenanthroline;
X =ClE=S,n=1; X =NH3 E= 0O, n=2) complexes
suggest that for this system there is strongdsack-bonding

structure ofl as determined by X-ray diffraction is shown in
Figure 11 Important metrical parameters for this complex
include a significantly shorter nitrogersulfur bond length than
is found in most thionitrosyl complex¥sand a typically short

] . S ruthenium-chloride bond lengtk as is frequently found for
to the nltrosg/l ligand, and there are similar trends for OSCl  cpyoride ligands bounttansto nitric oxide. These data suggest
(NE)(PPh)..” These results suggest that when contrasting the giminished Re-NS interaction with relatively weak Ru(e)
relatlye interactions of nltrosyl and thionitrosyl ligands with NS(7*) back-bonding. In addition, the porphyrin exhibits a very
transition metal centers, the fine balanceredcceptance and gjight 5, ruffiing with the ruthenium displaced 0.101 A toward
donation needs to be carefully considered. In this communica-

. : = X the thionitrosyl ligand.
tion we describe the following: (1) the synthesis and charac-  1pe gpectroscopic results for Ru(TTP)(NE)CI in Table 1 allow
terization by far-IR, U}/—ws spectroscopy, dlﬁe.rentlal scanning o 5 comparison of the bonding of a thionitrosyl versus a
calorimetry, and cyclic voltammetry of & new isostructural pair itrosyi group in an isosteric and isoelectronic environment. In
of ruthenium porphyrin complexes Ru(TTP)(NE)CI ¢ O,
S); (2) the remarkable transformation of a thionitrosyl/nitrite (10 All new compounds give satisfactory elemental analysis for C, H, and
complex to a nitrosyl/thiazate complex; (3) the crystal structures N. Additional characteristic data fdr—3 are as follows*H NMR (o
of two of these derivatives. Together these results suggest that 'S )p%ml g?g 330UD_|'%ggczfﬂisﬁn)tsgfasl"(zd)ggln EDGCEI;S)Zﬁ'?{Z §S’784|;3|’
for complexes with strong axially symmetric high-field donor (€ s = 7.7, 8H, Ho Ho), 2.63 (5, 12Hp-CHa): 2 (in CeDe). 9.16
ligands, such as porphyrinato dianions, the nitrosyl ligand is (s, 8H,Hp), 8.11 (d,33u = 7.1, 4H,Hp), 7.91 (d,3un = 7.7, 4H,
the betterr-acceptor. Hw), 7.16 Ho, Hy obscured by solvent), 2.39 (s, 12pHCH3); 3 (in
. . cs . 3 = 3

When Ru(TTP)(CO)(HOMe) is treated with trithiazyl trichlo- CDCl), 8.90 (s, 8HHp), 8.07 (d,%Jun = 7.7, 4H,Hrm), 8.00 (d, I

ride at room temperature, there is rapid displacement of carbon

= 8.6, 4H,Hw), 7.48 (t,°3un = 9.0, 8H,H,, Hy), 2.62 (s, 12Hp-CHy).

15N NMR (CDCls, 6 in ppm referenced to nitric acid)l, 111.95 (s,

NS).

T University of Wyoming. (11) Crystal data fod: Ru(TTP)(NS)CI, GgH3sCINsRuS,M = 851.43,
# University of East Anglia. monoclinic, space group2y/n, a = 11.309(2) Ab = 27.633(6) Ac
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L. J. J. Organomet. Cheni988 338 393. Mg m—3,1 = 0.710 73 Au = 0.547 mm'%, F(000)= 2616,T = 293

(2) Lichtenberger, D. L.; Fenske, R. forg. Chem.1976 15, 2015. K. Data were collected on a Siemens P4 diffractometer fer @ <
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Table 1. Summary of Characteristic Data for Ru(TTP)(NE)X Complexes

thermochemistry:

compd UV~vis (nm (loge))© electrochemistry;* (mV) T (°C)
_— min 1
E X no. IR (cnTY)2 Soret Q-bands MLCT oxidn redn AH (kcal mol?)
S Cl 1 1271 (1235)p(NS); 298 my(RuCl) 424 (5.44) 514 (4.26), 538 sh 658 (3.32) 940 (178), 1410(174655  384,—5.25
O ClI 2 1845 (1830)p(NO);> 323 m,»(RuCl) 414 (5.28) 562 (3.94), 600 sh 1021 (126), 1489 (120)89  stable to 480
O NSO 3 1829 (1793)p(NO); 1255 (1232), 416 (5.40) 572 (3.96), 606 sh 35625.28

»(NSO); 1075 (1073) wy(NSO);
515 (509) w,0(NSO)

aRecorded in KBr pellets witA®N labeled bands given in parentheses. All bands are strong unless otherwise® Satidkstate splitting as
confirmed by solution IRS Measured in dichloromethanéPotentials listed in mVs Ag*/Ag in dichloromethane solution with 0.1 M [IN{
butyl)s][PFs] as supporting electrolyte on a platinum button working electrode. Peak separation at a 100soa&hsspeed in the cyclic voltammetric
experiment given in parentheses for reversible processes; all other potentials are for quasi-reversible présedstesmined by differential
scanning calorimetry with a 18C/min scan rate under a flow of nitrogen.

. = . Figure 2. Molecular structure of Ru(TTP)(NO)(NSO) with view as
Figure 1. Molecular structure of Ru(TTP)(NS)CI for the nondisordered per Figure 1: RU(E}N(1,3,5,7) 2.0522.064(5); Ru(1}N(2) 1.737-

molecule A. Hydrogen atoms are omitted for clarity. Important bond (5); N(2)-O(1) 1.164(6); Ru(LyN(4) 2.022(5); N(4)-S(1) 1.467(5):
(1)—N(5)—S(1) 169.1(3); N(5rRu(1)}-CI(1) 174.3(1).

2,16 resulted in the formation of a nitrosyl thiazate complex,
Ru(TTP)(NO)(NSO)3. The identity of this complex has been
confirmed by X-ray crystallographl?, Figure 2, by IR spec-
troscopy, and an independent synthesis by treafBingith

the far-IR, thev(Ru—Cl) is ca. 25 cnt?! lower in energy for
the thionitrosyl compleX, and this is consistent with a stronger
transinfluence due to better-donation by the NS ligand. Both

the UV—vis and electrochemical results in Table 1 suggest that potassium thiazate, Schemé®1Although a similar thionitrosyl

there _is greater ele_ctron de_nsi_ty on the Ru(TTP) moiety;in_ — thiazate transformation has been observed for the oxygenation
the oxidation potentials are significantly lower and the separation IFCI(NS)(PPh),,20 the transformation of the most likely

of the Soret and)-bands is less fot than for2. Anunusual i termediate, Ru(TTP)(NS)(NfDto 3 represents a remarkabie
relatively weak and broad band at 658 nm is observed in the o556 of an oxo transfer reaction to give a thiazate/nitrosyl

UV—vis spectrum ofl. On this basis,_v_ve have assigned Fhis complex and illustrates the propensity for the formation of
band as resulting from an MLCT transition from the ruthenium | ;ihenium nitrosyl complexéd. We are currently using

to the low-lying*(NS) and note that we have n(;zé)bserved 8 Fenske-Hall level theory to dissect the relative Ru-NE bonding
similar band for any of the series Ru(TTP)(NO)X: interactions and will describe these results in the future.
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with identical steric effects. However, a mutualtyans

(18) Crystal data foB: Ru(TTP)(NO)(NSO), GgH3sNsO2RUS2CsHs, M
= 1018.17, monoclinic, space gro@2/c, a = 40.918(16) Ab =

arrangement of two nitrosyl ligands is very rare, with Os(OEP)- 9.012(4) Ac = 24.965(11) AB = 96.666(4), V = 9144(7) B, Z =
(NO), being the only reported stable examplea similar 8,Dc = 1.479 Mg nT%, 4 = 0.710 69 Ay = 0.428 mnt?, F(000)=
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